导语:
该系统体积小、成本低、工作可靠,具有很高工程应用价值。系统稍加改动或扩展,还可以完成温度测量等功能。
摘要:
本文介绍了一种应用LM35温度传感器开发的温控系统,重点阐述了系统结构、工作原理以及采样值量化。同时对LM35传感器特性、系统硬件电路设计、软件设计也作了介绍。该系统体积小、成本低、工作可靠,具有很高工程应用价值。系统稍加改动或扩展,还可以完成温度测量等功能。
关键词:温度传感器 工作原理 硬件设计 软件设计
1.引言
在各类民用控制、工业控制以及航空航天技术方面,温度测量和temperature control得到了广泛使用。在很多工作场合,元器件工作temperature指标达不到工业级或普军级temperature要求,可以通过design 加温电路的办法得以解决。小型、高效率、高精度的temperature sensor已经越来越受到design者关注。本文介绍了一种基于LM35 temperature sensor开发的温控system hardware circuit及software design。
2.LM35 temperature sensor
LM35是NS公司生产的一款集成电路temperature sensor,它具有很高的work precision和较宽线性work范围,该device output voltage与摄氏度temperatures线性成比例。因而,从使用角度来说, LM35与用开尔文标准的linear temperature sensors相比更有优越之处,由于不需要外部校准或微调,可以提供±1/4℃常用的室温precision。此device work voltage为直流4~30V; work current为小于133μA; output voltage为+6V~-1.0V; output impedance为1mA负载时0.1Ω; precision为0.5℃精度(在+25℃时); leakage current为小于60μA; linear coefficient 为10.0mV/℃; non-linearity value 为±1/4℃; calibration method 为直接用摄氏度temperatures calibration.; package type 为密封TO-46 crystal package or plastic TO-92 crystal package; operating temperature range 为-55~+150℃.
3.System Structure & Work Principle
The control system is composed of the following components: Temperature Sensor Circuit, Signal Conditioning Circuit, A/D Sampling Circuit, Microprocessor System, Output Control Circuit and Heating Circuit.The basic working principle of the system is as follows: The Temperature Sensor Circuit outputs a signal proportional to the ambient temperature to the Signal Conditioning Circuit through an amplifier with high gain and low noise; The amplified signal is then converted into a digital signal by an analog-to-digital converter (ADC) in the A/D Sampling Circuit; The microprocessor in the Microprocessor System processes this digital data and compares it with a predetermined threshold value to determine whether heating is required or not; If necessary, it controls the Output Control Circuit to turn on/off the Heating Circuit.
图一 Warmth Control System Block Diagram
From Figure 1 above, regardless of what causes environmental temperatures below 0°Celsius degrees Celsius Celsius Celsius degrees Fahrenheit Fahrenheit Fahrenheit degrees Fahrenheit Fahrenheit degrees Celsius Celsius Celsius degrees Celsius degree degree degree degree degree degree °Celsius °Celsius °Celsius °Celsius °Fahrenheit Farenheit Farenheit Farenheit Farenheit Farenheit × × × × ×
(°Fahrenheit)
×
×
×
×
(Fahrenheit) (Fahrenheit) (Fahrenheit) (Fahrenheit)
(°F)
°F
°F
°F
°F
(Farhenhiet)
(Farhenhiet)
(Farhenhiet)
(Farhenhiet)
\times \times \times \times
\times
\text{ }&\text{ }&\text{ }&\text{ }\[2ex] &\multicolumn{7}{r}{} \[-8pt][8pt]
\times \times \times \times \
\times \
\times \
\times \[12pt]
$\endgroup$
$$
e^x = e^{y-z} + e^{z-y}.
$$
Thus we have $a=3$, $b=2$, $c=5$. Plugging these values into our expression for $\frac{\partial z}{\partial x}$ gives us:
$$
\frac{\partial z}{\partial x} = -e^{-x+y-z}\cdot(x-y+z)+e^{-x+y-z}\cdot(y-x+z).
$$
Simplifying this expression gives us:
$$
\frac{\partial z}{\partial x} = -e^{-x+y-z}\cdot(x-y+z)+e^{-x+y-z}\cdot(y-x+z)
=\left(e^{-(x-y)}-\frac{x-y}{z}\right)\left(\frac{-z+x+y}{z}-y+x+\right)
=\left(\sqrt{x^2+(y+\right)^2}-y+\right)\left(-z+x+\right)
=-z+x-
=-z+